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Splitting Necklaces
NoGa ALON

Department of Mathematics, Tel Aviv University, Tel Aviv, Israel and
Department of Mathematics, Massachusetis Institute of Technology, Cambridge,
Massachusetts 02139

Let N be an opened necklace with ka, beads of color i, 1 <i/< 1. We show that it
is possible to cut N in (k—1)-¢ places and partition the resulting intervals into &
collections, each containing precisely a, beads of color i, 1 <7< This result is best
possible and solves a problem of Goldberg and West. Its proof is topological and
uses a generalization, due to Bardny, Shlosman and Sziics, of the Borsuk-Ulam
theorem. By similar methods we obtain a generalization of a theorem of Hobby and
Rice on L;-approximation. « 1987 Academic Press, Inc.

1. INTRODUCTION

Suppose a necklace opened at the clasp has k - n beads, chosen from ¢ dif-
ferent colors. Suppose there are k - a; beads of color i, 1 <i<t. A k-splitting
of the necklace is a partition of the necklace into k& parts, each consisting of
a finite number of nonoverlapping intervals of beads whose union captures
precisely a; beads of color i, | <i< ¢ The size of the k-splitting is the num-
ber of cuts that form the intervals of the splitting, which is one less than the
total number of these intervals. If the beads of each color appear con-
tiguously on the opened necklace, then any k-splitting of the necklace must
contain at least K — 1 cuts between the beads of each color, and hence its
size is at least (k— 1) . The following theorem shows that this number of
cuts always suffices to form a k-splitting.

THEOREM 1.1. Every necklace with ka; beads of color i, 1 <i<1t, has a
k-splitting of size at most (k —1)-t. The number (k—1)-t is best possible.

As mentioned in AW ], the problem of finding k-splittings of small size
arises naturally when k mathematically oriented thieves steal a necklace
with k-a, jewels of type i, and wish to divide it fairly between them,
wasting as little as possible of the metal in the links between jewels. As
shown in [BL, BLe] this problem also has some applications to VLSI
circuit design.
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Theorem 1.1 solves a problem raised in [GW ], and settles the conjecture
raised in [AW] (see also [O]). Its proof is topological and uses a
generalization, due to Barany, Shlosman, and Sziics [BSS] of the well-
known Borsuk-Ulam theorem [Bo7] (see also [D1]). Similar methods were
used in [AFL] to solve the general Kneser problem.

The case k=2 of the theorem was first proved in [GW]. In [AW] there
is a short proof of this case, using the Borsuk-Ulam theorem. In both
papers an appropriate continuous generalization of the discrete problem is
solved. This continuous problem is closely related to a theorem of Hobby
and Rice [HR] on L, approximation. Using our methods we can
generalize the Hobby—Rice theorem and prove s

THEOREM 1.2. Let uy, ts,.., i, be t continuous probability measures on
the unit interval. Then it is possible to cut the interval in (k— 1)1 places and
partition the (k —1)-t+ 1 resulting intervals into k families F,, F,,...,F, such
that u{ O F;y=1/k for all 1 <i<t, 1 <j<k. The number (k—1)-t is best
possible.

The case k=2 of the last Theorem i1s the Hobby-Rice theorem [HR].

Our paper 1s organized as follows. In Section 2 we formulate the con-
tinuous version of the k-splitting problem and prove that it.generalizes the
discrete one. In sections 3 and 4 we apply the topological results of [BSS]
to solve the continuous problem. In Section 5 we modify this solution to
prove Theorem 1.2.

2. CONTINUOUS SPLITTING

Let /=[0, 1] be the unit interval. An interval t-coloring is a coloring of
the points of 7 by ¢ colors, such that for each i, 1 <i<1, the set of points
colored i is (Lebesgue) measurable. Given such a coloring, a k-splitting of
size r is .a sequence of numbers 0=y, < y; <y, €y, <y, =1 and a
partition of the family of r+ 1 intervals F={[y,, v,.,1:0<i<r} into k
patrwise disjoint subfamilies F,,..., F, whose union is F, such that for each
1 <j< k the union of the intervals in F; captures precisely 1/k of the total
measure of each of the 1 colors. Clearly, if each color appears contiguously
and colors occupy disjoint intervals, the size of each k-splitting is at least
(k —1)- 1 Therefore, the next theorem, which we prove in Sections 3, 4, is
best possible.

THeOREM 2.1.  FEvery interval t-coloring has a k-splitting of size (k—1)- 1.

It is not difficult to check that the theorem implies Theorem 1.1, which is
its discrete version. Indeed given an opened necklace of k-#n beads as in




SPLITTING NECKLACES 249

Theorem 1.1, convert it into an interval coloring by partitioning /= [0, 1}
into k- n equal segments and coloring the j-th segment by the color of the
Jj-th bead of the necklace. By Theorem 2.1 there is a k-splitting into the
families of intervals F,,..., F,, with (k—1)-t cuts, but these cuts need not
occur at the endpoints of the £ - n segments. We show, by induction on the
number r of the “bad” cuts, that this splitting can be modified to form a k-
splitting of the same size with no bad cuts, i.e., a splitting of the discrete
necklace. If »=0 there is nothing to prove. Assuming the result for all
r"<r, suppose the number of bad cuts is #>0. Then there is some |
1 i<, such that there is a positive number of bad cuts in the interior of
segments belonging to color i. Construct a multigraph G on the set of ver-
tices F,, F,,.., F, with an edge {F,, F,} corresonding to each bad cut in
color i between an interval belonging to F; and an interval belonging to F,.
Since the measure of color i captured by each Fj is an integral multiple of
l/kn, if a vertex F, of G has a positive degree, its degree is at least 2. Thus
G contains a cycle. We can now slide all the cuts corresponding to the
edges of this cycle by the same amount, without changing the measure of
any color captured by the Fs, until one of the cuts reaches the boundary
of its small segment. This decreases the number of the bad cuts by at least
one and completes the proof of the induction step. Hence Theorem 2.1
implies Theorem 1.1. .

3. THE PROOF OF THEOREM 2.1

Theorem 2.1 follows from the following two assertions.
PROPOSITION 3.1.  Theorem 2.1 holds for every odd prime k.

ProrosITION 3.2. The validity of Theorem 2.1 for (t,k) and for (1,1)
implies its validity for (¢, k- /).

Theorem 2.1 for £ =2 was proved in [GW] (see also [AW] for a short
proof). Hence, by Propositions 3.1 and 3.2 it holds for all ¢, k.

The proof of Proposition 3.1 is topological and is given in the next sec-
tion. We concluded this section with the (easy) proof of Proposition 3.2,

Proof of Proposition 3.2. Given an interval f-coloring ¢, we obtain a
k - l-splitting of size (k- /—1)-t as follows. Begin by using (k— 1) ¢ cuts to
form k families of intervals each capturing 1/k of the measure of each color.
For each of these families, consider the interval coloring formed by placing
its intervals nex! to each other and rescaling to total length 1. Using
({— 1)t cuts, we obtain an /-splitting of this coloring. Transforming back
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to the original interval coloring, this adds together to &-(/—1)-¢ more
cuts, so altogether we have (k—1)-t+k(/—1) t=(kl—1) -t cuts which
form the desired & - /-splitting.

4. THE PROOF OF PROPOSITION 3.1

We begin by stating two results of Barany, Shlosman, and Sziics [ BSS],
which are crucial for our proof. Let £ be an odd prime, and suppose m = 1.
Let X=X, , denote the CW-complex consisting of k disjoint copies of the
m-(k—1) dimensional ball with an identified boundary $™* " ! We
define a free action of the cyclic group Z, on X by defining w, the action of
its generator, as follows, (see [ Bou, Chapter 137, for the definition of a free
group action on a topological space). Represent S™* =11 a5 the set of all
m by k real matrices (a;)satisfying >¥_, a;=0 for all 1<i<m and
2., a; = 1. Define now

W(a:j,') = (aij+ 1)

where j+ 1 is reduced modulo k. Thus w just cyclically shifts the columns
of a matrix representing a point of §”* 1! Trivially, this action s free,
ie., w(x)#x for all xeS™*—D~' The map w is extended from §™*—-1-!
to X, as follows. Let (y, r, g) denote a point of X from the g-th ball with
radius r and S™*~Y-! _coordinate y. Then

wiy, r,q)=(wy, r,qg+1),

where ¢+ 1 is reduced modulo k. Since k is prime, w defines a free Z,
action on X=X, ..

Lemma 4.1 [BSS]. For any continuous map h: X — R™ there exists an
x € X such that h(x)=h{wx)= --- = h(w*" 'x).

Put N=(k—1)-(m+1) and let 4" denote the N-dimensional simplex,
18, AN = (xg, X1 entnt B T sk Oant 2, k= L} The seppareals
point x € A" is the minimal face of A" that contains x. Let y = y,, denote
the following CW-complex;

Ywvae= 15 Varess V)i Vi Y €AY
and the supports of the y/s are pairwise disjoint}.

There is an obvious free Z, action on Y, ,; its generator y maps

(yl yrimy yk) into (.})2""’ Vi )’1)-
Let T and R be two topological spaces and suppose that Z, acts {reely
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on both. Let o and f denote the actions of the generator of Z, on T and R,
respectively. We say that a continuous mapping f: T — R is Z,-equivariant
if foa=fof, (cf. [Bou, Chapter 13]).

Recall that for s>0, a topological space T is s-connected if for all
0</<s, every continuous mapping of the / dimensional sphere S’ into T
can be extended to a continuous mapping of the /+ 1 dimensional ball
B'*! with boundary S’ into T.

Lemma 4.2 [BSS]. Suppose k is an odd prime, mz=21, N=
(k—=U(m+1Vyand let X=X, Y=Yy,, wand y be as in the preceding
paragraphs. Then Y is N—k=dim X —1 connected and thus there is a
Z-equivariant map [ X — Y.

We can now prove Proposition 3.1. Let k be an odd prime and let ¢ be
an interval r-coloring. Put X=%, ,,, Y=Y, ,,.,, and define a con-
tinuous function g: Y — R~ ! as follows. Let y = (y,, ¥2,..., ¥ ) be a point of
Y. Recall that each y, is a point of 4", i.e., is an (N + 1)-dimensional vector
with nonnegative coordinates whose sum is 1, and that the supports of the
y/’s are pairwise disjoint. Put x=(xq, X;,..., Xy)=1/k (¥, + yo+ ...+ y),
and define a partition of [0, 1] into N+ 1 intervals I,./,,.., Iy, where
L =T0, Xaly L= ot X Fimg Xy 115/ & N Notice that smes fie Sup-
ports of the y/s are pairwise disjoint, if x;>0 (ie., the interval [, has
positive length), then there is a unique /, 1 </<k such that the j-th coor-
dinate of y, is positive. For 1 </<k, let F, be the family of ali those ;s
such that the j-th coordinate of y, is positive. Note that the sum of lengths
of these I;’s is precisely 1/k. For 1 £i<—1, define g,(y) to be the measure
of the i-th color in U F|.Finally, put g(y)=(g(»).8:(¥),-, & (). One
can easily check that g: ¥ — R'~! is continuous. Moreover, for 1 </<k
and 1<i<t—1, g(y""'y) is the measure of the i-th color in U F,. By
Lemma 4.2 there exists a Z,-equivariant map /= X, ,— Y ,.xx. Define
h=gofiX—>R~' By Lemma4.]l there is some xeX such that
h(x)=h(wx)= --- =h(w* 'x). By the equivariance of f,y= f(x) satisfies
g(v)=g(yy)= - = g(+* 'y). But this means that each of the families of
intervals £, F,,.., F, corresponding to y captures precisely 1/k of the
measure of each of the first 7—1 colors. Since the total measure of each F;
is 1/k, each F, captures precisely 1/k of the measure of the last color, as
well. Dividing the length 0 intervals arbitrarily between the F’s we
conclude that there is a k-splitting of size N=(k—1)-¢, as desired. This
completes the proof of Proposition 3.1.
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5. GENERALIZING THE HOBBY—RICE THEOREM

Given ¢ measures i,,.., u, on the unit interval, a k-splitting of size r is a
sequence of numbers 0=y, <y, < - €y, <y,,,=1 and a partition of
the family of r+ 1 intervals F={[y,y,,,1:0<i<r} into k pairwise dis-
joint subfamilies F,..., F, whose union is F, such that for each 1 <j< k and
I<gig,

(U F) =7 110, 1)

A close look at the proof of Theorem 2.1 given above will convince the
reader that we made no use of the fact that the 1 measures considered there
come from an interval coloring. The only requirement is that these are con-
tinuous measures and that the sum of the ¢ measures of any interval is its
length. We thus have:

LEmMMA 5.1. Let m,, m,,.., m, be t continuous measures on the unit inter-
val and suppose

([0, a]}+ - +m ([0, a])=2
for all 0<a< 1. Then, for all k>1, there exists a k-splitting of size
(k—1)-¢

Theorem 1.2 is derived from this lemma using compactness arguments.
Indeed, let u,, us,..., i, be 1 continuous probability measures on the unit
interval 1. Suppose £> 0. Define the following ¢ measures m,,..., m, on L
For 1 €j< 1t put m; =y, /k and define m, = (u,+&-m, )/(1 +¢) k, where m,
is the wusual Lebesgue measure. Put m=m,+ - +m, and define
10,11 - [0,1] by f(x)=m([0, x]). The function f is continuous, onto
and strictly increasing and thus its inverse f ! is also continuous and
strictly increasing. For 1<j<r let m; be the measure given by mj(§)=
mi{f~(S)). Clearly, for every 0<a<1, mi([0,«])+ - +m([0,2])=

om0, 2]) =m([0, /~'(«)]) =« Therefore, by Lemma 5.1, there is
a k-splitting of size (k —1)-¢ for the measures m, m5,...,m;. The function
S~! will carry this k-splitting into a k-splitting of the same size for the
measures m,, m,,.., m,. Let F,, F,,.., F, be the k collections of intervals
that form this splitting. By the definition of the m/s, these collections
almost form a k-splitting for the original measures g, is,..., #,. Indeed

1
lui(UFi):;Ni([O»]]) for I<i<rl<gj<k (5.1)
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and p, (U F;)+em (U F))= (1 +e)k for | £j<k, ie.,

k—1
k

+ &

e<plu F)< for 1€/<k (5.2)

| —
»'

By choosing a sequence ¢, » 0 and obtaining a convergent subsequence
of the sequence of k-splittings of size (kK — 1) - ¢ satisfying (5.1) and (5.2) for
these ¢,'s, we obtain a k-splitting of size (k— 1) -z for the measures f,,..., 4,.
This completes the proof of Theorem 1.2.
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